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Abstract
We study the two-dimensional ±J Ising model, three-state Potts model and
four-state Potts model by the numerical transfer matrix method to investigate
the behaviour of the sample-to-sample fluctuations of the internal energy on
the Nishimori line. The result shows a maximum at the multicritical point in
all the models we investigated. The large sample-to-sample fluctuations of the
internal energy as well as the existence of a singularity in these fluctuations
imply that the bond configuration (or, equivalently, the distribution of frustrated
plaquettes) may be experiencing a non-trivial change in its behaviour at the
multicritical point. This observation is consistent with the picture that the
phase transition at the multicritical point is of geometry-induced nature.

PACS numbers: 05.50.+q, 75.50.Lk

1. Introduction

Two-dimensional spin glasses, especially the ±J Ising model and the random q-state Potts
model, have been studied using both theoretical and numerical methods. Some exact results
have been derived [1], the phase diagram has been drawn [1, 2] and recently the exact location of
the multicritical point has been predicted [3]. However, the characteristics of the multicritical
point are not well understood except that the critical exponents have different values from
those along the ferro–para critical curve [2, 4]. The properties of the multicritical point are
of great interest because this point represents one of the simplest non-trivial renormalization
group fixed points in random spin systems [5] and also because we may be able to understand
the significance of the Nishimori line from the study of the multicritical point.

In the present paper we investigate the sample-to-sample fluctuations of the internal energy
near the multicritical point. The thermal average of the Hamiltonian, namely the internal
energy, has different values from one bond configuration to another, given a fixed probability
parameter (p for the ferromagnetic bonds in the ±J model, for example). Although the
internal energy is self-averaging, the variance of its distribution is of order N, the system size.
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If the variance is anomalously large and singular at some point, it would mean that a non-trivial
(and possibly drastic) change happens in the bond configuration at that point because the value
of the internal energy fluctuates strongly from sample to sample. This is exactly what we shall
show in the present paper to exist at the multicritical point by observing the system along the
Nishimori line.

The Nishimori line plays an important role in the determination of the phase diagram.
In particular, it is believed that the multicritical point lies on the line [1]. We have
another advantage to study the sample-to-sample fluctuations along the Nishimori line: these
fluctuations are directly related to the average specific heat on the line. This fact reduces
numerical efforts considerably because it is not necessary to generate very many samples to
calculate the variance. Only the average of the specific heat needs to be computed. We shall
make full use of this relation later.

In the next section, we show that the sample-to-sample fluctuations of the internal energy
are very simply related to the specific heat on the Nishimori line. This facilitates numerical
calculations enormously as mentioned above. In section 3 we investigate numerically the
behaviour of these fluctuations near the multicritical point on the Nishimori line for three
models: the ±J Ising model, three-state Potts model and four-state Potts model. We will
see that these fluctuations show a maximum at the multicritical point. The physical significance
of the results is discussed in the final section.

2. Average fluctuations of the internal energy

Let us consider the random Zq model with gauge symmetry which includes the ±J Ising
model and the random q-state Potts model. The general Hamiltonian is written as follows:

H = −
∑

〈ij〉
V (Si − Sj + Jij ) (1)

where Si = 0, 1, . . . , q − 1 is the q-state spin variable, Jij = 0, 1, . . . , q − 1 is the quenched
random bond variable and V is an interaction function of period q. The summation is taken
over the first-neighbouring sites of the square lattice. The Jij variable follows the probability
distribution

P(Jij ; βp) = eβpV (Jij )

∑q−1
η=0 eβpV (η)

. (2)

The Hamiltonian (1) is invariant under the gauge transformation Si → Si − σi, Jij →
Jij + σi − σj , where σi = 0, 1, . . . , q − 1, but P(Jij ; βp) is not. Using the gauge theory
[1], some exact results can be derived such as the average internal energy on the so-called
Nishimori line defined by β ≡ 1/T = βp,

[E] ≡ [〈H 〉] = −NB

∑
η V (η) eβV (η)

∑
η eβV (η)

. (3)

Here the square brackets denote the configurational average, the angular brackets are for the
thermal average and NB is the number of bonds. If we denote

{V } =
q−1∑

η=0

V (η)P (η; β)

equation (3) is expressed as

[E] = −NB{V }. (4)
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In the case of the ±J Ising model, q = 2, V (0) = +J and V (1) = −J , the average internal
energy (3) reduces to

[E] = −NBJ tanh(βJ ).

In the case of the q-state Potts model with V (0) = +J and V (1) = V (2) = · · · =
V (q − 1) = 0,

[E] = −NBJ
1

1 + (q − 1) e−βJ
.

We also find from the gauge theory that

[〈H 2〉] = NB{V 2} + NB(NB − 1){V }2 (5)

when β = βp; thus, with equation (4),

NB({V 2} − {V }2) = [〈H 2〉] − [〈H 〉]2. (6)

Since the specific heat is defined by

T 2[C] = [〈H 2〉 − 〈H 〉2] (7)

we obtain, combining equations (6) and (7),

NB({V 2} − {V }2) − T 2[C] = [E2] − [E]2 (�0). (8)

The right-hand side of equation (8) is the sample-to-sample fluctuations of the internal energy,
[(�E)2]. Note that equation (8) holds only on the Nishimori line β = βp. In the case of the
±J Ising model, equation (8) reduces to the well-established inequality

T 2[C] � NBJ 2 sech2(βJ ).

Equation (8) indicates that the sample-to-sample fluctuations of the internal energy can
be evaluated from the average of the specific heat because the quantity {V 2}− {V }2 is trivially
calculated. This fact is a great advantage since it eliminates the necessity to evaluate the
variance directly by using a large number of samples; the specific heat is a self-averaging
quantity and therefore can be calculated with high precision from a small number of samples
with sufficiently large system size. Away from the Nishimori line, we do not have such a
simple relation because equations (4) and (5) do not hold.

Since the actual distribution of bond values (and therefore of frustration) changes from
sample to sample in finite-size systems with given βp, the internal energy takes various values
from one set of bonds to another around the average value. Relation (8) helps us to estimate the
variance of the internal energy [(�E)2] and directly depends on the distribution of frustration,
which has a geometrical nature: the sample-to-sample fluctuations of the internal energy
should reflect the geometrical structure of the distribution of frustration, which is a quantity
independent of thermal variables but depends only on the bond configuration. This argument
suggests that we may be able to investigate the properties of the distribution of frustration by
looking at the sample-to-sample fluctuations of the internal energy, or equivalently, the average
specific heat on the Nishimori line. It is believed that the Nishimori line intersects the phase
boundary between paramagnetic and ferromagnetic phases [1] (see figure 1). If the distribution
of frustration undergoes a sharp change in its behaviour, it would be reflected in anomalously
large sample-to-sample fluctuations of physical quantities including the internal energy. Such
an anomaly, if it exists on the right-hand side of equation (8), is related to the singularity of
the specific heat at the multicritical point on the Nishimori line due to equation (8). Since the
specific heat is singular at the multicritical point, we may conclude that the sample-to-sample
fluctuations are also singular there. Hence, by calculating the average specific heat near the
multicritical point, we are able to investigate the structure of the distribution of frustration,
which is of purely geometrical nature. A similar argument has been used to relate the free
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Figure 1. Phase diagram of the ±J Ising model in two dimensions. There exist ferromagnetic
(F) and paramagnetic (P) phases, and no spin glass phase exists. The Nishimori line is shown as a
dashed line.

energy and the entropy of frustration [6]. The next section gives us some numerical support
to confirm this idea.

3. Numerical calculations

We have tested the ideas of the previous section by numerically calculating the average specific
heat on long strips by the transfer matrix method. We have studied three models: the ±J

Ising model, three-state Potts model and four-state Potts model. We have used long strips
of length 5000 and of various widths with free boundary conditions and without an external
field. By the transfer matrix method we calculated the free energy along the Nishimori line.
The specific heat was obtained from the numerical second derivative of the free energy by the
inverse of the temperature. We averaged the specific heat over ten samples.

For the ±J Ising model the widths of the lattice are 3 � L � 14. The lattice size (up to
5000 ×14) and number of samples (ten) are much smaller than those in the existing numerical
transfer matrix studies [4, 7]. However, since our purpose is much more modest than these
investigations (not trying to evaluate the critical exponents, for instance), our system size turns
out to be sufficient as we shall show. Another reason for the small scale of our computation
is that the use of formula (8) greatly reduces the necessary number of samples as discussed in
the previous section.

We define the parameter p for the ±J Ising model by

e2βpJ = p

1 − p
.

Thus p is the probability that Jij = 0, i.e. V (Jij ) = +J .1 Each bond follows the probability
distribution

P(Jij ) = pδ(Jij ) + (1 − p)δ(Jij − 1)

and we restrict our studies to 0.5 < p < 1. For the three-state Potts model, 3 � L � 9 and
for the four-state Potts model, 3 � L � 7. For the q-state Potts model, we define

eβpJ = 1

p
− (q − 1)

1 Note that we use the Hamiltonian (1) where Jij takes the values 0 and 1. This notation is completely equivalent to
the usual Hamiltonian H = −∑

Jij SiSj where Si, Sj and Jij /J take the values ±1.
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Figure 2. Extrapolation of T 2C near the multicritical point for the ±J Ising model, p = 0.8900.
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Figure 3. Extrapolation of T 2C near the multicritical point for the three-state Potts model,
p = 0.0795.

and the probability distribution (2) is then

P(Jij ) = (1 − (q − 1)p)δ(Jij ) +
q−1∑

l=1

pδ(Jij − l)

with 0 < p < 1/(q − 1).
For each point on the Nishimori line β = βp we extrapolate the specific heat to the limit

L → ∞. We have found that the extrapolation by the L−1 law works quite well in almost all
cases (see figures 2–4). This is natural because we are mostly treating values of p away from
the multicritical point. Exactly at the multicritical point, the extrapolation needs some care,
in particular if one wishes to estimate the critical exponents [4]. However, for our purpose to
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Figure 4. Extrapolation of T 2C near the multicritical point for the four-state Potts model,
p = 0.0615.
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Figure 5. Sample-to-sample fluctuations of the internal energy for the ±J Ising model.

confirm the existence of a peak in the sample-to-sample fluctuations of the internal energy at
the multicritical point, the method of extrapolation is rather irrelevant, which we confirmed by
using other powers such as L−1.5 in some cases. The error bars in the extrapolated values have
been estimated by changing the range of extrapolation fitting, for example, from comparison
of extrapolation using 3 � L � 14 with that using 6 � L � 14.

The resulting values of the energy fluctuations are plotted in figures 5–7 for the ±J Ising
model, three-state Potts model and four-state Potts model, respectively. The positions of the
multicritical points are predicted in [3]: for the ±J Ising model pc = 0.889 972, for the
three-state Potts model pc = 0.079 7308 and for the four-state Potts model pc = 0.063 0965.
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Figure 6. Sample-to-sample fluctuations of the internal energy for the three-state Potts model.
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Figure 7. Sample-to-sample fluctuations of the internal energy for the four-state Potts model.

By comparison of these values with those in figures 5–7 we clearly see that the sample-
to-sample fluctuations of the internal energy have a maximum at (or at least very near) the
multicritical point for each model. It seems reasonable to expect similar behaviour in other
random models with Zq symmetry.

4. Conclusion

We have studied the ±J Ising model, three-state Potts model and four-state Potts model by the
numerical transfer matrix method. We have first shown that the sample-to-sample fluctuations
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of the internal energy are, on the Nishimori line, related to the specific heat and are expected
to have a peculiar behaviour at the multicritical point. It was found indeed from numerical
calculations that the sample-to-sample fluctuations become anomalously large at or very near
the multicritical point in all the models we investigated. Since these fluctuations are related
to the specific heat by equation (8), they should have a singularity at the multicritical point
(as the specific heat is singular there) although it is difficult to see this effect within our
numerical precision. The existence of a peak at the multicritical point in conjunction with
the existence of a singularity, anyway, suggests that the bond distribution and the distribution
of frustration undergo an anomalous change in behaviour at p = pc. This point of view
is in agreement with the argument in [6] that the phase transition at the multicritical point
along the Nishimori line is induced by a geometrical anomaly2. Since the rate of thermal
excitations (e−βJ /eβJ ) coincides with the ratio of the bond configurations ((1 − p)/p) on
the Nishimori line, the physical situations are very special there, which may be one of the
reasons for the existence of a maximum in the configurational variance of the thermal quantity
at the multicritical point along the Nishimori line. It is an interesting future problem to
investigate what happens on the sample-to-sample fluctuations of physical quantities away
from the Nishimori line.

Note added in proof. We have found after submission of the paper that the sample-to-sample fluctuations of the
energy, equation (8), is proportional to the derivative of the energy by Kp with K fixed. Thus a maximum in these
fluctuations means that the energy changes most dramatically at the multicritical point as Kp changes. The exact
upper bound on the specific heat is the sum of two derivatives by K and Kp and corresponds to the derivative along
the Nishimori line.
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